

Office of Science & Technology Stock Assessment Science Program Review September 9-12, 2014 – Silver Spring, MD

Patrick D. Lynch, Ph.D.

Stock Assessment Coordinator
Office of Science and Technology

Outline

- Stock Assessment Improvement Plan (2001)
 - Purpose & ST role
 - Content Summary
 - Response & Results
 - Challenges
- A new Stock Assessment Improvement Plan
- Strengths, challenges, solutions

Landmark strategic planning document

- Identified program gaps & resource needs
- Justified budget increases
- Guided budget implementation
- Improved the National assessment program

Mace and 7 others (2001)

ST role (significant)

- Led by Assessment Coordinator
 - Coordination and development
 - Document preparation and communication to leadership
 - Utilized for strategic planning
 - Budget initiatives & implementation
 - Track progress and impacts

Content Summary

- Assessment science and process (nationally & regionally)
- Address NRC (1998) Improving fish stock assessments
- Numerical system for characterizing assessments (Levels)
- Three Tiers of Assessment Excellence
- Resource assessment / requirements to achieve goals

Content Summary

THREE TIERS OF
ASSESSMENT EXCELLENCE

- Context: resource requirements
- Goal: add resources to move up the tiers

TIER 3

Next generation assessments

- Assess all managed species or species groups at a minimum Level of 3
- Assess core species at a Level of 4 or 5
- Explicitly incorporate ecosystem considerations, including environmental effects, oceanography, and spatial analysis

TIER 2

Elevate all assessments to new national standards of excellence

- Upgrade to at least Level 3 for core species
- Adequate baseline monitoring for all managed species

TIER 1

Improve assessments using existing data

- More comprehensive for core species
- Mine existing databases for species of unknown status

Content Summary

Ten recommendations, consolidated:

- 1. Budget & staffing (aim for Tier 2 initially)
- 2. Outreach (NMFS capabilities, precautionary approach, role of ecosystem in assessments)
- 3. Data over methods (e.g., cooperative research)
- 4. Support research and professional development
- 5. Graduate education and staff training
- 6. Create 'umbrella' strategic plan (include SAIP)

Response

- 1. <u>Budget & staffing</u>: justification for growth
 - EASA: \$1.7M to \$69M in FY14
- 2. <u>Outreach</u>: website, Assessment 101, Species Information System, Quarterly Reports, Council Training
- 3. <u>Data collection</u>: survey days, fishery-dependent programs, cooperative research, advanced sampling, new RFP
- 4. Research and professional development: assessment methods WG, suite of RFPs, methods workshops
- 5. Education and training: QUEST faculty, graduate fellowships
- 6. Strategic plan: developed for NMFS, ST, and science centers

Results

- More assessments/year
- More higher-level assessments
- More data-limited assessments

Results (not a 1:1 comparison)

Results (not a 1:1 comparison)

SAIP (2001)

Current assessed

Results

Two assessment-related performance measures

FSSI (subset ~230 stocks)

- Overfishing known: +0.5
- Overfished known: +0.5
- Not overfishing: +1
- Not overfished: +1
- At B_{target}: +1

% Adequate Assessments

- FSSI subset
- Level ≥ 3
- Age ≤ 5 years

Challenges

- Confusion with Tiers and Levels
 - Tier 3 = next gen. = Level 5 assessment
 - Comprehensive assessments for all stocks?
 - Linear sequence not completely logical & data drive assessment level
 - Low-level assessments can incorporate ecosystem
 - E.g., habitat stratification more important than catchability?
- <u>% Adequate Assessments</u>: not completely responsive to budget and other improvements
- Workforce needs: impractical

A New Stock Assessment Improvement Plan

Necessary to improve strategic planning

- Need for prioritization rather than moving toward Tier 3
- % adequate has plateaued

Approach

- Led by Senior Scientists (Methot and Link)
- Large WG: 28 scientists across science centers, and Offices of ST and Sustainable Fisheries
- Process
 - Monthly teleconferences, chapter subgroup calls, 1 in-person workshop
 - Target 1st draft: Fall 2014

A New Stock Assessment Improvement Plan ST Role (5 staff on WG)

- Coordinate (development, editing, publishing)
- Support Senior Scientists
- Write, contribute, and help develop ideas
- Help communicate ideas/progress to leadership
- Dissemination (press release, web-hosting, etc.)
- Utilize in planning and budgeting process
- Track progress and results

A New Stock Assessment Improvement Plan Objective

NOAA Fisheries' Next Generation of Stock Assessments Timely and efficient Streamlined data management Standardized assessment modeling Efficient assessment review process Improved communication and outreach **Prioritized** Tailored Stock-specific attributes Customized to set appropriate: used to: Level Determine which stocks Frequency need assessments Type (benchmark/update) The NGSA · Establish priority for assessment Framework Fill important data gaps Holistic & Ecosystem-linked Technologically advanced Where appropriate, include climate, Maximize data collection: habitat, multispecies, other Survey more stocks environmental effects, and Expand sampling footprint socioeconomic analyses Estimate absolute abundance Support Integrated Ecosystem Innovative science and research: Improve analytical methods Assessments

A New Stock Assessment Improvement Plan

Key development

Replace <u>Tiers of Excellence</u> with <u>Prioritized Portfolio</u>

Incorporate new
National Assessment
Prioritization Protocol

Develop new numerical system for characterizing assessments

Adapt Prioritization
Protocol to set target
assessment levels

- Track assessment performance (assessments relative to target levels rather than fixed target for all)
- Identify gaps
- Guide strategic planning and investments

A New Stock Assessment Improvement Plan

Components

- Section 1: Intro and Accomplishments
- Section 2: Current Enterprise
- Section 3: Next Generation Stock Assessment Enterprise
- Section 4: Summary and Recommendations

Themes

 Data collection, analytical tools, quality assurance and the assessment process, and ecosystem considerations

Strategic Planning and the SAIP

Strengths

- Comprehensive strategic vision encompassing National and Regional priorities
- ST plays significant role and closely links with strategic planning
- Facilitates collaboration across the Agency
- Strong influence over relatively large budget
- Useful for outreach

Challenges

- Large WG spread across the country (including the core group)
- SAIP development requires significant effort from very busy individuals
- NMFS cannot fully address all recommendations because partner institutions and Councils play a role

Strategic Planning and the SAIP

Solutions

- Maintain regular communication; increase deadline enforcement; engage with supervisors to ensure SAIP is high priority for participants
- Establish smaller core group of writers and allow regional participants to review and edit
- Increase communication and outreach broadly to get buy-in from multiple stakeholders (e.g., Councils)

Backup Slides...

Content

Numerical system for characterizing assessments (Levels)

Data

Catch

0 = none

1 = landed catch

2 = catch size composition

3 = spatial patterns (logbooks)

4 = catch age composition

5 = total catch by sector (observer)

Abundance

0 = none

1 = fishery CPUE or imprecise survey with size comp

2 = precise frequent survey with age comp.

3 = survey with estimates of q

4 = habitat specific survey

Life history

0 = none

1 = size

2 = basic demographic

3 = seasonal or spatial info (migration/mixing)

4 = food habits data

Models

Assessment

0 = none

1 = index only (commercial/research CPUE)

2 = simple life history equilibrium model

3 = aggregated production

4 = size/age/stage structured

5 = add ecosystem (multispp., envir., spatial, seasonal)

Frequency

0 = never

1 = infrequent

2 = frequent (2 -3 years)

3 = annual or more

Content

Numerical system for characterizing assessments (Levels)

Content

- Determining resource requirements
 - Census of stock assessment staff
 - Time and motion analysis: demands on assessment scientists
 - Survey: regional programmatic needs
 - Tabulate requirements to achieve TIERS OF EXCELLENCE

Content

Staff requirements by region

	Current							
Activity	In-house/contract/ other			Tier 1	Tier 2	Tier 1+2	Tier 3	All Tiers
NEFSC	123	49	16	18	43	61	25	86
SEFSC	71	30	46	14	42	56	39	95
SWFSC	80	15	26+	27	60	87	66	153
NWFSC	18	33	59	13	74	87	39	126
AFSC	154	122	54	31	66	97	51	148
Summed FTEs	446	249	201	103	285	388	220	608
\$\$ (FTE x \$150K)				\$15,450K	\$42,750K	\$58,200K	\$33,000K	\$91,200K

^{*}Also presented by scientific activity

